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Abstract. We study the different kinds of constraints which appear when one deals with 
singular Lagrangians depending on second-order derivatives. We characterise Ker FL. 
and deduce the generalised Hamilton-Dirac equations of motion. The operators relating 
the Hamiltonian and the Lagrangian constraints are displayed. We extend our results to 
higher-order singular Lagrangians. 

1. Introduction 

Recently [ 1-71 the relation between the Lagrangian and the Hamiltonian formalisms 
for singular Lagrangians depending on the generalised coordinates and their first-order 
derivatives has been studied. Although such Lagrangians cover many of the interesting 
physical theories and models (Yang-Mills theories, relativistic particles and string 
theories), they do not apply to some important theories such as Hilbert’s action for 
gravity [8] and Podolsky’s generalised electrodynamics [9], whose Lagrangians depend 
on the second-order derivatives of the fields. Also, Polyakov [ 101 proposed an action 
for the string theory which has a term proportional to the extrinsic curvature of the 
world sheet. This idea has been extended to the relativistic particle [11]§. 

Some authors [9,13] have proposed a generalised Dirac-Bergmann algorithm for 
the second-order case and, recently [ 141, the study of the Lagrangian and Hamiltonian 
contraints has received some attention. Nevertheless, the rich constraint structures of 
these systems have not been analysed and some important points have not been treated 
in detail. 

In this paper, we clarify the relations between the constraints and deduce the 
Hamiltonian equations of motion, generalising the methods developed in our previous 
works [l, 2,4]. In $ 2  we present the Euler-Lagrange equations and the generalised 
Legendre transformation FL. The various spaces involved are shown and Ker FL. is 
evaluated, which leads to the determination of the primary Hamiltonian constraints. 
In 0 3, we establish the equations of motion in phase space and in § 4 we obtain the 
relations between the Hamiltonian and the Lagrangian constraints. In 0 5 ,  we illustrate 
the formalism using a relativistic particle whose action is proportional to its extrinsic 
curvature. Finally, in § 6 we generalise our results to higher-order singular Lagrangians. 

5 After completion of this work, we received [12], where the Hamiltonian analysis of the rigid string proposed 
in [lo] is carried out. 
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2. The primary Hamiltonian constraints 

Let us consider a system described by coordinates x A (  t ) ,  A = 1, . . . , N, where t is the 
evolution parameter, and with dynamics given by a Lagrangian L(x, i, x )  depending 
on second-order derivatives. The Euler-Lagrange equations are 

aL d J L  d2 aL 
a x A  d t a i A  d t 2 a x A  

+--=O A = l ,  . . . ,  N - 

which are N fourth-order differential equations that can be written 

wA;XB = (YA (2) 

where 

is the generalised Hessian matrix and 

(YA = (YA (x ,  x, x, % ) a  

If 

det W=O 

the system is said to be singular and equations (2) cannot be put in normal form. This 
implies that, in general, the solutions will not be unique for a given set of initial data 
in T3Q, where T3Q is the third-order tangent bundle [15] locally coordinated by x, x, 
2, 2, and they will exist only in a submanifold of T3Q. From now on we assume that 

rank W =  r <  N N - r = m , > O  ( 5 )  

( 6 )  

so m, nullvectors yc(x ,  x, x )  exist such that 

wABYE = 0 

xzp'%E = 0 , ~ E ) E  A'( T 3 Q ) .  (7) 

p = 1 , .  . . , m , .  

Some Lagrangian constraints follow immediately from (2) and (6) 

Next we want to find out the consequences of ( 5 )  in the phase space. To this end we 
introduce the generalised Legendre transformation [ 151 

aL d aL 
a i A  dt  a i A  PlA=--- - 

and 

aL 
P 2 A = z a  

It is worth noticing that 
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Roughly speaking, what we want to do is to substitute i, x by p 2 ,  p l .  Furthermore, 
this substitution will be performed by steps and we introduce the spaces 

FL 

T3Q __* p1 - 
( x ,  1, x, 2) (x, x, x, P I )  (x, x, P 2 ,  P I )  

where the final space T*( TQ) has canonical pairs ( x ,  p l ) ,  (x, p 2 ) .  We will also consider 
the pull-back 

FL* : ha( T*( TQ) )  + A'( T3Q)  

which amounts to the substitution of p l ,  p 2  by x, x, x, x according to equations (8). 
Due to (6) and (9b), some primary constraints appear in PI : 

and some others in T*( TQ), due to ( 6 )  and (9a) 

4:) E AO( T*( TQ) )  

FL*+:) = 0. (12) 

( 1 1 )  

which do not depend on p l ,  4:) = +:)(x, x, p2) .  The following identities hold: 

Taking this into account, we can easily prove that a basis of nullvectors of W is given 
by 

Furthermore, we get the relations 

Next, we shall compute Ker FL,. If we want that a vector field 

r=aA-+pA-+8  a a A d  a 
axA axA a i A  axA 

belongs to Ker FL,, then it has to obey 

r( FL*xA) = r( FL*XA) = r(FL*P,A) = r( FL*p,A) = 0 (16) 

and it follows immediately that a A  = P A  = 0. Due to (9b) and the fact that p 2  does 
not depend on x, we can take 

p = 1 , .  . . , m1 (17) A a  rr = Y r  dj;IA 
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but another solution involving a / a f  as well as a/aa can be chosen: 

- A ’  A a  r=6 - - + E  -. 
a x A  a x A  

Indeed, imposing f (  F L * p , , )  = 0, it follows that 6 A  = y e  and then f (  F L * p 1 , )  = 0 gives 

and thus 

If this system is to have a solution we must impose 

It is easy to evaluate 

(22) 
a P l A  d 2 L  a2L d 
a i B  - a j l B  d i A  a j t A  a i B  d t  wAB 

and thus the conditions (21) become 

Y Z Y E  v = l ,  ..., ml (23) 

due to the fact that d( y e  W A B y f ) / d t  = 0. It is a simple computation [ 131 to show that 

where { , } denotes the Poisson bracket in T*(TQ) defined by 

where q;’ = xA, q; = x A .  According to this Poisson bracket, the constraints 4;) can 
be split into first- and second-class ones [ l ,  21: 

po= 1 , .  . . , m2 
pA= 1 , .  . . , m l - m 2  W O  

with the properties 

MO being the submanifold in T*(TQ) locally defined by 4;’=0. Putting (23), (24), 
(26) and (27) together, we realise that, in order to construct f ,  we must restrict ourselves 
to the nullvectors associated with primary first-class constraints 

a a 
f,= Y ; ” , , j l A + “ ; o ~  po= 1,. . . , m, 
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A 
E + ~  being a solution of WAB&Eo = y~,dpIA/aXB.  Therefore, on each point of T3Q, the 
dimension of Ker FL, is m, + m,. Thus, FL( T 3 Q )  is a submanifold of T*( TQ) locally 
defined by m,+ m2 independent functions f such that FL*f = 0. From (12) we get m, 
of such functions. The other m2 are given by those of the primary constraints xl",' in 
PI which are a,-projectable onto T*( TQ). Indeed, FL can be decomposed as FL = 
a20 al, in such a way that 

(29) 

It is an easy matter to realise that Ker a2* is expanded by the vector fields ycd /dXA 
and then, using the relations (24), one concludes that only the xl",',,, po= 1 , .  . . , m2 are 
a,-projectable. 

Summing up, the submanifold of primary Hamiltonian constraints in T*( TQ) is 
locally defined by 

a* (0) = 0 
24r * 

a* (0) - 0 
1 X l r  - 

/* p = 1 , .  . . , m, (30) +(O) 

and 

9 If,' *;9;,)= X l + O  (0) po= 1, .  . . , m2.  

We notice that the E;,, in (28) are just given by 

Some other constraints in T*( TQ) might appear by requiring the stability of the primary 
ones. 

3. The generalised Hamilton-Dirac equations 

First, we want to find the Hamiltonian equations of motion from the Euler-Lagrangre 
ones. The energy function E E A'( T3Q)  

E(X,  X, X, X)=XAFL*pl,+XAFL*p2,-L(X, X, X) (33) 
is FL-projectable since T,E = 0 and f M E  = 0. Therefore, there exists a function 
H, E A'( T*( TQ))  such that 

FL*H, = E. (34) 

H C ( ~ ,  X,pl,p2) = X A p l A + R c ( X ,  X,p2)- (35) 

This function may be chosen in the following form 

Let us show this point. Since E is also a,-projectable, we have the intermediate 
function E ,  E A'( P,) such that 

E , ( x ,  X, X , p , ) = X A p , A f X A L Y ~ P 2 A - L ( X , X ,  2 ) .  

Then, the a,-projectability of E,  guarantees the existence of H, having the form given 
in (35) which can be written, with the notation of (25), as 

Hc(q1, q 2 , P I , P 2 ) = q ~ P l A + ~ c ( c ( 4 1 ,  q29P2). (35') 

wA,(XB-q;)=o (36) 

Now, derivation of (34) with respect to x gives the empty relation 
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while derivation with respect to f shows up 

and therefore there exist functions A ”, completely determined, such that 

with y ;  defined by (13). 
Once again, derivation of (34) with respect to q2 gives 

or 

and, using (37), 

which is 

where use has been made of (12). Finally, derivation of (34) with respect to q1 gives, 
in a similar way, 

We are now ready to transform the Lagrangian equations of motion (1) into the 
Hamiltonian formalism. First, the trajectories satisfy d q f l d t  = q f ,  which can be written 
as 

Next, (37) is, on the motion, 

d4f  - aHc+A’l- a+:) 
d t  ap2A d p 2 A ’  

The definitions (8) allow us to write the left-hand side of (38) as dp2/dt, giving 
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Finally ( sa )  and the Lagrangian equations of motion transform (39) into 

Equations (40)-(43) define the time derivative as 

(44) 
d 
d t  
-={ , H,}+AC”{ , +;I}. 

The functions A P  depend on q l ,  q2 and dq2/dt, so the system (40)-(43) is not in normal 
form. This is just the typical situation of the Hamiltonian equations of motion of a 
singular system, as is pointed out in [ l ,  21. It is possible to prove, following the lines 
of [2], the equivalence between the Lagrangian equations of motion ( 1 )  and the 
Hamiltonian ones (40)-(43). 

We conclude therefore that the canonical study corresponding to second-order 
singular Lagrangians shows up the same features that we know to happen in the 
standard case, the only differences being the special form (35) of the Hamiltonian and 
the fact that the constraints 4;’ only depend on half of the momenta. 

Next we proceed to study the stability of the primary Hamiltonian constraints. The 
stability of the 4;) imposes 

o = {dzp), H,} + A y@’), +to)} 
and using (27) we get 

c4;:, Hcl = 0. (45) 

These constraints are just the constraints 4;; defined in (31).  To show this, we need 
to prove that 

dkbzp;, H J =  xi0’ PO’ (46) 

In fact 

but from (12), which can be written as a$+;’ = 0, we have 

and therefore 

Now we use the identities (37) and (38) to substitute aTaHc/ap2 and a$aH, /aq ,  and 
finally we arrive at 

a,*{4f!, H , } = ~ ( l ~ o + A P F L * { ~ ~ ) ,  +;’}. 

But we know from (27) that FL*{4;’, 4??} = 0, and therefore 

a w ; : ,  H J =  X Y ’  PO. 
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Now a question of language can be raised. From the point of view of the canonical 
theory, the primary constraints are the 4:) and the secondary ones are the 42;; then 
there may exist tertiary constraints and so on. But if we consider the Legendre 
transformation given by (8), both 4;) and 4:; have to be considered as primary 
canonical constraints. We note that, although constraints 4:; appear in the canonical 
formalism by using the dynamics, only equations (40), (41) and (42) are involved; but 
these equations are equivalent by (15) to the requirement q2 = dql/dt  and the definitions 
(8). Therefore, from the Lagrangian point of view, dynamics is not involved (i.e. we 
make no use of (1)). Thus, there is no kind of paradox. It simply happens that 
dynamics in canonical formalism includes relations appearing in the Lagrangian 
formalism as definitions. 

4. Connection with the Lagrangian formalism 

By generalising the time evolution operator K defined in [2] we can introduce the 
operators 

K 2  : An( T*( TQ) )  + A'( P,) K1 : Ao(Pl )  + .Ao( T3(  TQ))  

defined by 

and 

These operators take a function in the correspondent space and give its time derivative 
in another space. In particular, when acting on constraints in some space, they give 
the constraints in the other space. In this direction it is easy to prove that 

(49) (0) - (0) K24p - X l r  

i.e. the known constraints in P1, and it is equally straightforward to show that 

which are the Lagrangian constraints arising directly from (2), i.e. the first generation 
of Lagrangian constraints. This analysis can be continued at every level of the algorithm 
to determine the constraints of the theory. Hence, generalising some results of [2,4], 
all the Lagrangian constraints can be obtained from the Hamiltonian ones using K1 0 K 2 .  

5. The second-order relativistic particle 

Let us consider a relativistic particle whose action is proportional to its extrinsic 
curvature [ 11, 141 
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where an explicit parametrisation has been chosen. The momenta are 

and 

where 

12 = gx2 1X = -q w = 0. 

He= (P192). 

do) = (p2q2) = 0 
+p = p ;  - ( r 2 / q ;  = 0 

The canonical Hamiltonian (35) is 

The definition of p Z p  gives the constraints 

(54) 

( 5 5 )  

which are first class. The definition of p l r  also produces two constraints in PI, which, 
due to the fact that both (56) and (57) are first class, are projectable onto T*(TQ), 
giving the result 

dl)= (PI921 = 0 ( 5 8 )  

+i" = (p1p2) = 0. (59)  
One can check that (58) and (59) can be obtained from (56) and (57) using the canonical 
Hamiltonian ( 5 5 ) .  The four constraints (56)-(59) constitute the whole set of primary 
Hamiltonian constraints, and they are all first class. Now we can show that the stability 
of (58) gives nothing new 

&'"' = {+$I),  H,} 0 (60) 

$5') = {& He}  = -p :  = -p )  (61) 

while (59) brings in a new constraint 

and the algorithm stops here, so finally we are left with five first-class constraints. +('I 
is a tertiary constraint from the point of view of the Hamiltonian dynamics, but it is 
a secondary one from the point of view of the Legendre transformation. Its appearance 
implies that a Lagrangian constraint has to exist, and it can be obtained applying FL* 
to + ( 2 )  or K~ 0 K~ to +PI. 

6. The higher-order case 

Here we give a brief summary of the generalisation of the present work to higher-order 
singular Lagrangians of the type 

In phase space we will use the notation qi = d i - l ) .  

L(x,  x(1), x(2 ) ,  . * . , X ( * ) )  ~ ( ~ 1  dix/dti. (62) 
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(a) The Hamiltonian equations of motion (which in the regular case are known 
as Ostrogradski’s equations) are given by [16] 

where the canonical Hamiltonian has the form 

the A p  are canonically unknown functions 

A’ = A w ( q 1 , .  * 3 q m ,  dqm/dt) ( 6 5 )  
and the r$:’(ql,. . . , qm, p , )  are the canonical primary constraints coming from the 
definition of the highest-order momenta [ 151: 

l3L 
P m = d X ( m ) *  

The other momenta are defined according to 

(b) The Legendre transformation given by the definition of the whole set of 
momenta leads to a family of constraints (including the 4;’) which splits in m 
generations. All these constraints can be obtained canonically by requiring the stability 
of the previous generation. This process may determine some of the functions A K .  
After the last generation of primary Hamiltonian constraints has been obtained, new 
constraints may appear which are not a consequence of the Legendre transformation. 

(c) A number of intermediate spaces, PI, P 2 , .  . . , Pm-l, can be defined to pass 
from P m - ’ ~  to T*( T,-’Q): 

TZm-’Q+ P I . .  . Pm-l + T*( T”-’Q) 

Some constraints appear in these spaces due to the singular character of the Lagrangian. 
(d) A family of operators K i ,  which connect the constraints in the different spaces 

mentioned above, can be defined in the same way as in the second-order case. 

7. Conclusions 

In this paper we have generalised the results of [ 1,2] to the case of singular Lagrangians 
depending on second-order derivatives. An important result is that the primary Hamil- 
tonian constraints, i.e. those which follow directly from the definition of the Legendre 
transformation, come in two generations. The first one is brought in by the definition 
of the p Z A  and the second one comes from the definition of some of the PIA. Hamiltonian 
dynamics gives the second generation from the first one. Introducing the operators 
K 1  and Kz  we have been able to relate the constraints appearing in T3Q, PI and 
T*( TQ). All the results have a straightforward generalisation to higher-order singular 
Lagrangians. 
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We expect this work will be useful in order to construct the canonical gauge 
transformations and the BRST generators for higher-order systems. 
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